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We present a constrained interpolation (CI) algorithm for remapping of 
divergence free vector fields encoded as 2-cochains on a two-dimensional 
cell complex. On contractible domains discrete divergence free fields are 
2-coboundaries and so they have potentials represented by 1-cochains. 
The algorithm takes advantage of this fact by using the discrete potential 
to effect the remapping of the divergence free field. The discrete potential 
is reconstructed and interpolated to the new cell complex. Application of 
the coboundary operator gives the discrete divergence free field on the 
new mesh. In contrast to advection-based remappers, this algorithm has 
several valuable advantages. The new cells are not required to be small 
perturbations of the old cells. The grids can have different connectivities 
and can consist of different cell types. The CI algorithm also avoids the 
complications arising from the need to upwind on unstructured grids in 
transport-based remappers.  

Introduction  
Transfer of data between different grids, subject to constraints, is fundamental to 

many numerical algorithms. An important example is Arbitrary Lagrangian-Eulerian 
(ALE) methods, which combine a Lagrangian update with rezoning to reduce grid 
distortion and remapping to transfer solution to the rezoned mesh. A computational 
strategy that can combine the best properties of Eulerian and Lagrangian methods is to 
execute rezoning and remapping at every time cycle. The accuracy of such continuous 
rezone ALE strongly depends on the availability of efficient and accurate remappers. For 
instance, remapping of concentrations or density fields must preserve positivity and total 
mass (Margolin and Shashkov, 2003), while a magnetic flux B must remain divergence-
free; see (Brackbill and Barnes, 1980) for the importance of this constraint in MHD.  

In a continuous rezone ALE method individual cell movements are limited to small 
perturbations. As a result, remappers have been defined by using advection algorithms 
(Evans and Hawley, 1988). However, connection between the advection equation and 
remapping of discrete divergence free vector fields does not appear to be well 
understood, in particular, the discretization errors in advection remappers are not easily 
identified. 
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Alternatively, we can view remapping of divergence free fields as an interpolation 
procedure that may be additionally constrained to provide physical solutions (Margolin 
and Shashkov, 2003). Interpretation of remap as interpolation rather than as advection is 
more flexible because it allows formulation of algorithms on arbitrary pairs of grids and 
circumvents the need for upwinding on unstructured grids. 

In this paper we present a constrained interpolation remap algorithm for divergence-
free vector fields, represented by 2-cochains on a cell complex, without reference to 
advection. Given a 2-cochain b with the property that δb=0, where δ is the coboundary, 
the algorithm starts with an explicit recovery of a 1-cochain a with the property that 
δa=b. This recovery is made possible by the exactness property of the cochain complex 
(Bochev and Hyman, 2005). Post-processing is used to increase the order of the 
recovered potential and local optimization is used to determine a convex combination of 
high and low order potentials that minimizes the energy difference between the original 
and the remapped cochains. The optimized potential is interpolated to the new cell 
complex where application of δ gives the remapped discrete divergence free field. 
Because our algorithm is formulated for cochains it can be easily extended to a large 
class of mimetic discretizations, that use cochains to represent scalar and vector fields 
(Bochev and Hyman, 2005). 

There are several aspects of our approach that set it apart from the existing methods. 
Divergence-free remappers are normally defined on Cartesian grids, using a dimension-
by-dimension approach. Often they require additional restrictions, such as grid hierarchy, 
or factor-of-two refinement; see (Balsara, 2001), (Toth and Roe, 2001). Methods on 
unstructured grids usually employ Lagrange multipliers (Carey et al, 2001) and are non-
local. This reduces their efficiency compared to advection remappers. In contrast, 
interpolation of a potential instead of using a Lagrange multiplier allows us to enforce 
divergence free explicitly and without solving an indefinite saddle-point system. 

We formulate and present the CI remapper for cochains on a logically Cartesian cell 
complex. The method is illustrated by using two-dimensional cyclic remap problems. 
Numerical examples demonstrate attractive numerical properties of the CI remap 
including handling of discontinuities and energy dissipation. 

Constrained Interpolation Remap 
For definitions of chains, cochains, the associated boundary and coboundary 

operators, and how they are used to define mimetic discretizations we refer to (Bochev 
and Hyman, 2005). In this paper, we focus on application of the mimetic framework 
described in (Bochev and Hyman, 2005) to the remap problem.  

Formulation of the remap problem 
Let Ω denote a bounded open region in two dimensions. We assume that Ω 

contractible. To apply the mimetic structures of (Bochev and Hyman, 2005) it is 
profitable to think of Ω as a three-dimensional region obtained by extruding the original 
domain by a constant “thickness”. The computational grid on Ω is represented by a chain 
complex. We assume that two such complexes, denoted by 

  

! 

K = C
0
,C

1
,C

2
,C

3( ) and 

  

! 

˜ K = ˜ C 
0
, ˜ C 

1
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2
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3( ), respectively, are given on Ω. Cochains represent vector and scalar 
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fields. The cochain complex on   

! 

K  is denoted by
  

! 

C = C
0
,C

1
,C

2
,C

3( ) and the complex on 

  

! 

˜ K  - by 
  

! 

˜ C = ˜ C 
0
, ˜ C 

1
, ˜ C 

2
, ˜ C 

3( ). The statement of the remap problem is as follows: 

Given a 2-cochain 

! 

b" C
2  on   

! 

K , such that 

! 

"b = 0, find a 2-cochain 

! 

˜ b " ˜ C 
2 

on   

! 

˜ K  such that 

! 

" ˜ b = 0  and 

! 

˜ b " b . 

The cochain 

! 

b" C
2represents a divergence free field on the “old” mesh   

! 

K . In the 
remap problem, we seek to recover a cochain 

! 

˜ b " ˜ C 
2 that represents the same field on the 

“new” grid   

! 

˜ K , by using only the information about this field encoded in 

! 

b" C
2 . In what 

follows, for simplicity we assume that the chain complex is defined with respect to a 
logically Cartesian (but non-uniform) grid partition of Ω into quadrilateral cells. 

Discrete exactness 
A fundamental property of 

  

! 

C = C
0
,C

1
,C

2
,C

3( ) is the exactness 

! 

0"C
0 #
$ " $ C

1 #
$ " $ C

2 #
$ " $ C

3
" 0 (1) 

which follows from the fact that coboundary is dual to the boundary with respect to the 
pairing between chains and cochains. De Rham’s theorem implies that the kth singular 
cohomology and the kth cohomology are isomorphic. By assumption Ω is contractible and 
so every closed form is a differential. Translated to cochains we have that every cocycle 
is a coboundary. As a result,  

! 

"b = 0 if and only if there exists 

! 

a" C
1 such that 

! 

b = "a. 
This result is fundamental to our remap algorithm. Instead of using Lagrange 

multipliers to enforce the divergence free constraint, or a constrained transport to advect 
the divergence free field, we will obtain that field by remapping its potential a and then 
applying the coboundary. 

Explicit recovery of the potential 
The key to the constrained interpolation remap algorithm is explicit recovery of the 

potential 

! 

a" C
1. To develop the recovery procedure let 

! 

K " C
2
denote a quadrilateral 

cell with vertices 

! 

" ij

1{ } , i,j=0,1 and faces 

! 

"
F

2{ }, F∈(D,U,R,L), for the “Down”, “Up”, 
“Right” and “Left” faces. When the grid is logically Cartesian, the 2-chains can be 
oriented in a particularly simple manner. Specifically, we will assume that for each cell 

! 

K " C
2
, the “horizontal” faces U and D are oriented by choosing the normal that points 

in the North direction, and that the “vertical” faces L and R are oriented by the normal 
that points in the East direction. 

We identify the vertices of the cell with the edges of its three-dimensional extruded 
counterpart. Since chains and cochains are isomorphic, the sets 

! 

" ij

1{ }  and 

! 

"
F

2{ } are bases 
of 

! 

C
1 and 

! 

C
2 , respectively, on K. As a result, on K, any 

! 

a" C
1 and 

! 

b" C
2  are given by 

the expansions 

! 

a = aij" ij

1

i, j= 0,1

#  and 

! 

b = b
F
"
F

2

F=D,U ,R ,L

# , (2) 
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respectively. Considering the orientation convention for the faces of K, it is easy to see 
that the coboundary of 

! 

b" C
2  is given by the formula 

! 

"b = b
R

+ b
U
# b

L
# b

D
 (3) 

and that the coboundary of

! 

a" C
1 is given by the formula 

! 

"a = a
00
#
D

2
$#

L

2( ) + a
10
$#

R

2
$#

D

2( ) + a
01
#
L

2 +#
U

2( ) + a
11
#
R

2
$#

U

2( ) . (4) 

Equivalently, we can write Eq. (4) as  

! 

"a = a
00
# a

10( )$D

2 + a
01
# a

11( )$U

2 + a
11
# a

10( )$R

2 + a
01
# a

00( )$ L

2 . (5) 

Note that 

! 

"a# C
2 and 

! 

""a = 0.  

 
Figure 1. Recovery of the potential at four adjacent vertices. 

Assume now that 

! 

b" C
2 is such that 

! 

"b = 0. We know that b has a potential a and 
from the expressions for the action of the coboundary on 1 and 2-cochains in Eqs. (3) and 
(5) we see that 

! 

b = "a if and only if 

! 

b
D

= a
00
" a

10( ); b
L

= a
01
" a

00( ); b
U

= a
01
" a

11( ); b
R

= a
11
" a

10( ). (6) 

From Eq. (6) one can determine recursively the value of the potential at any vertex 
(i,j) as follows. Assume that a is known at a vertex P. On logically Cartesian grids this 
vertex has exactly four neighbors, labeled by (i), (ii), (iii) and (iv); see Fig. 1. Then, from 
Eq. (6), it is not hard to see that if Q is one of these four vertices, then 

! 

a Q( ) = a P( ) + "bF , (7) 

where 

! 

b
F
 is the value of b associated with the face QP and  

    

! 

" =
1  if Q is (i) or (iv)

-1 if Q is (ii) or (iii)

# 
$ 
% 

. (8) 

We can use this formula to determine recursively the potential at every point Q on the 
grid by starting at an arbitrary (but fixed) vertex Q0 and then connecting that vertex with 
Q by a 2-chain. Figure 2 shows that, in fact, potential values will be computed at every 
point along the indicated 2-chain. The initial value at Q0 represents a “gauge” and selects 
a potential from an equivalence class of potentials that differ by a constant. This value is 
not important for the divergence free field and can be set to zero. 
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Figure 2. Recovery of the potential at vertices along a chain. 

If an initial vertex and a gauge value have been fixed, the value of the recovered 
potential does not depend on the path between the initial vertex and the point. To see this, 
consider a pair of 2-chains  

  

! 

C
1

= "
S1

#
S1

2

S1

$  and 
  

! 

C
2

= "
S2

#
S2

2

S2

$  (9) 

that start and terminate at the same two endpoints and let 

! 

"
C

 denote the region enclosed 
by them. Then,   

! 

"#
C

= C
2

-C
1
, and since 

! 

"b = 0, using duality of chains and cochains, we 
find that 

  

! 

0 = "b,#
C

= b,$#
C

= b,C
2
% b,C

1
. (10) 

The uniqueness of a follows by observing that the value of the potential is given by the 
contraction 

! 

b,C
2

 of b with the chain C2 and that according to the above 

! 

b,C
2

= b,C
1

.  

To summarize, given a discrete divergence free field b we can recover its potential by 
choosing a 2-chain that forms a spanning tree for the grid and then computing recursively 
the contraction of b with the subchains of that spanning tree. 

Constrained Interpolation Algorithm 
Using the explicit recovery procedure presented in the last section, we can now 

formulate the constrained interpolation remap algorithm as follows. Let R denote a high 
order reconstruction operator and assume that   

! 

I :K " ˜ K  is a bounded linear 
interpolation operator between the two chain complexes. The operator R can be defined 
using a number of techniques from finite element and finite difference methods and will 
not be discussed here. For an example of a patch recovery approach, we refer to (Bochev 
and Shashkov, 2005). Construction of the interpolation operator for vertex-based values 
can be accomplished using standard C0 Lagrange finite element basis functions. The 
constrained interpolation remap algorithm comprises of the following three steps. 

(1). Potential recovery: given a discrete divergence free b define a spanning tree 
and compute a. 

(2). Postprocessing and optimization:  
a. define the parameterized potential by 
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! 

a "( ) = "a + 1# "( )R a( )  

where λ is a real function whose values are in [0,1]. 

b. compute λopt by solving the optimization problem 

  

! 

"opt = argmin #a
2
$ #Ia(")

2( )
2

˜ K % ˜ C 2

&  

(3). Remap of b: set 
  

! 

˜ a =Ia "opt( )  and define 

! 

˜ b = "˜ a . 

The potential a determined in Step 1 is first-order accurate and may cause substantial 
energy dissipation in the remap. The high-order reconstruction operator is needed to 
reduce the loss of energy. However, using only the high-order potential 

  

! 

R a( )  may cause 
an increase in the total energy. The optimization step controls the energy by using a 
convex combination of a and 

  

! 

R a( ) . The cost functional penalizes the energy difference 
between the original and the candidate discrete divergence free fields with respect to the 
cells on the “new” chain complex   

! 

˜ K . To avoid solution of a global optimization problem 
we approximate 

! 

"opt  by a piecewise constant function 

! 

"opt
˜ K ( ) , defined by solving local 

optimization problems on each cell 

! 

˜ K  of the “new” complex: 

! 

"opt
˜ K ( ) = argmin b ˜ K 

2
# $a " ˜ K ( )( )

˜ K 

2% 

& 
' 

( 

) 
* . (11) 

Simpler solutions can be defined by approximating 

! 

"opt  by a single constant, or by 
using a feedback control loop. For more details about these methods, we refer to (Bochev 
and Shashkov, 2005).  

Numerical Examples  
We test the constrained interpolation algorithm using a cyclic remap approach 

proposed in (Margolin and Shashkov, 2003). The method uses a sequence of grids 
parameterized by a fictitious time parameter taking values between 0 and 1, such that the 
first and the last grids in the sequence coincide. Therefore, cyclic remap allows to asses 
the cumulative effect of many remappings by comparing the initial and the final fields. In 
the first example the constrained interpolation algorithm is used to remap the smooth 
divergence-free field 

! 

B =" # sin(2$x)sin(2$y)( )  on a sequence of 100 randomly 
perturbed uniform grids. Figure 3 shows the total energy of the remapped field as a 
function of the fictitious time. As expected, using a first-order potential is accompanied 
by energy loss, the high-order potential leads to energy growth, while using any one of 
the three energy control methods, mentioned in the last section, helps to maintain an 
almost constant energy throughout the remap cycle. 
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Figure 3. Energy of the remapped field for different choices of the parameter. First-
order potential: λ=1, high-order potential: λ=0; and three optimization strategies. 

In the second example, the algorithm is used to remap a discontinuous divergence 
free field on a sequence of 100 smoothly deformed uniform grids. For a precise definition 
of the grid sequence we refer to (Margolin and Shashkov, 2003) and (Bochev and 
Shashkov, 2005). The goal of this experiment is to compare performance of piecewise 
constant and a constant approximation of the parameter 

! 

"opt . Figure 4 shows that in both 
cases the discontinuity is captured fairly well and is not overly smeared. However, 
approximation of 

! 

"opt  by a single constant leads to visible under and overshoots near the 
discontinuity. This is caused by the inability of a single control parameter to account for 
the local variation in the field behavior. In contrast, using a piecewise constant 
approximation of 

! 

"opt , computed on each cell, helps to maintain an almost monotone 
profile of the discontinuous solution component. 
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Figure 4. Comparison of a piecewise constant (top) vs. a constant (bottom) 

approximation for 

! 

"opt  and a discontinuous divergence free field. 

Conclusions  
We presented a remap algorithm for divergence free fields encoded by 2-cochains on 

a two-dimensional cell complex. The algorithm takes advantage of the existence of 
discrete potentials to define the remap procedure. It is applicable to a broad range of 
spatial discretizations that use cochain representations of vector and scalar fields. The use 
of interpolation instead of advection makes the algorithm appropriate for general grid 
configurations, including grids that have different topologies and grids that are not small 
perturbations if each other.  
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